3.196 \(\int \frac {A+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=125 \[ -\frac {(5 A-3 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {2 A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}-\frac {(A+C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

2*A*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d-1/4*(5*A-3*C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^
(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)-1/2*(A+C)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {4053, 3920, 3774, 203, 3795} \[ -\frac {(5 A-3 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {2 A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}-\frac {(A+C) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Sec[c + d*x]^2)/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*A*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) - ((5*A - 3*C)*ArcTan[(Sqrt[a]*Tan[c
 + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A + C)*Tan[c + d*x])/(2*d*(a + a*Sec[c
 + d*x])^(3/2))

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 3920

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4053

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[
(a*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e
 + f*x])^(m + 1)*Simp[A*b*(2*m + 1) - a*(A*(m + 1) - C*m)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C}
, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {A+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac {(A+C) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {\int \frac {-2 a A+\frac {1}{2} a (A-3 C) \sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {(A+C) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {A \int \sqrt {a+a \sec (c+d x)} \, dx}{a^2}-\frac {(5 A-3 C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac {(A+C) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {(2 A) \operatorname {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a d}+\frac {(5 A-3 C) \operatorname {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d}\\ &=\frac {2 A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac {(5 A-3 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.46, size = 154, normalized size = 1.23 \[ -\frac {\tan \left (\frac {1}{2} (c+d x)\right ) \left ((A+C) (\cos (c+d x)-1)-\sqrt {2} (5 A-3 C) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)-1} \tan ^{-1}\left (\frac {\sqrt {\sec (c+d x)-1}}{\sqrt {2}}\right )+8 A \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)-1} \tan ^{-1}\left (\sqrt {\sec (c+d x)-1}\right )\right )}{2 a d (\cos (c+d x)-1) \sqrt {a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Sec[c + d*x]^2)/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

-1/2*(((A + C)*(-1 + Cos[c + d*x]) + 8*A*ArcTan[Sqrt[-1 + Sec[c + d*x]]]*Cos[(c + d*x)/2]^2*Sqrt[-1 + Sec[c +
d*x]] - Sqrt[2]*(5*A - 3*C)*ArcTan[Sqrt[-1 + Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d*x)/2]^2*Sqrt[-1 + Sec[c + d*x]]
)*Tan[(c + d*x)/2])/(a*d*(-1 + Cos[c + d*x])*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

fricas [B]  time = 3.16, size = 544, normalized size = 4.35 \[ \left [-\frac {4 \, {\left (A + C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - \sqrt {2} {\left ({\left (5 \, A - 3 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (5 \, A - 3 \, C\right )} \cos \left (d x + c\right ) + 5 \, A - 3 \, C\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 8 \, {\left (A \cos \left (d x + c\right )^{2} + 2 \, A \cos \left (d x + c\right ) + A\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {2 \, {\left (A + C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - \sqrt {2} {\left ({\left (5 \, A - 3 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (5 \, A - 3 \, C\right )} \cos \left (d x + c\right ) + 5 \, A - 3 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + 8 \, {\left (A \cos \left (d x + c\right )^{2} + 2 \, A \cos \left (d x + c\right ) + A\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(4*(A + C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - sqrt(2)*((5*A - 3*C)*cos(
d*x + c)^2 + 2*(5*A - 3*C)*cos(d*x + c) + 5*A - 3*C)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a
)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos
(d*x + c) + 1)) + 8*(A*cos(d*x + c)^2 + 2*A*cos(d*x + c) + A)*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)*sq
rt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)))/(a^
2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(2*(A + C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*co
s(d*x + c)*sin(d*x + c) - sqrt(2)*((5*A - 3*C)*cos(d*x + c)^2 + 2*(5*A - 3*C)*cos(d*x + c) + 5*A - 3*C)*sqrt(a
)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) + 8*(A*cos(d*x +
 c)^2 + 2*A*cos(d*x + c) + A)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin
(d*x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Warning, integration of abs or sign assumes constant sign by intervals
 (correct if the argument is real):Check [abs(cos(d*t_nostep+c))]Unable to check sign: (2*pi/t_nostep/2)>(-2*p
i/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)
>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nos
tep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi
/t_nostep/2)>(-2*pi/t_nostep/2)Unable to check sign: (2*pi/t_nostep/2)>(-2*pi/t_nostep/2)Warning, assuming -2*
a+a is positive. Hint: run assume to make assumptions on a variableWarning, assuming -2*a+a is positive. Hint:
 run assume to make assumptions on a variableWarning, assuming -2*a+a is positive. Hint: run assume to make as
sumptions on a variableWarning, assuming -2*a+a is positive. Hint: run assume to make assumptions on a variabl
eDiscontinuities at zeroes of cos(d*t_nostep+c) were not checkedWarning, integration of abs or sign assumes co
nstant sign by intervals (correct if the argument is real):Check [abs(t_nostep^2-1)]Evaluation time: 1.23index
.cc index_m i_lex_is_greater Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 1.98, size = 554, normalized size = 4.43 \[ -\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (4 A \sqrt {2}\, \sin \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \cos \left (d x +c \right )+4 A \sqrt {2}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+5 A \sin \left (d x +c \right ) \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )-3 C \sin \left (d x +c \right ) \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )+5 A \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-3 C \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-2 A \left (\cos ^{2}\left (d x +c \right )\right )-2 C \left (\cos ^{2}\left (d x +c \right )\right )+2 A \cos \left (d x +c \right )+2 C \cos \left (d x +c \right )\right )}{4 d \left (1+\cos \left (d x +c \right )\right ) \sin \left (d x +c \right ) a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x)

[Out]

-1/4/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(4*A*2^(1/2)*sin(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan
h(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*cos(d*x+c)+4*A*2^(1/2)*arctanh(1/2*(
-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*
x+c)+5*A*sin(d*x+c)*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)-3*C*sin(d*x+c)*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x
+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)+5*A*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2
)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-3*C*ln(((-2*cos(d*x+c)/
(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-2*A
*cos(d*x+c)^2-2*C*cos(d*x+c)^2+2*A*cos(d*x+c)+2*C*cos(d*x+c))/(1+cos(d*x+c))/sin(d*x+c)/a^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C/cos(c + d*x)^2)/(a + a/cos(c + d*x))^(3/2),x)

[Out]

int((A + C/cos(c + d*x)^2)/(a + a/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________